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We propose a new method to estimate the risk of large 
cascading blackouts triggered by multiple contingencies, 
using a search algorithm called “Random Chemistry”. Risk 
estimates converge at least two orders of magnitude faster 
than a conventional Monte-Carlo simulation for two test 
systems (e.g., Fig. 1). Using this method, we can quickly 
estimate how risk changes with load level (Fig. 2) and find 
the most critical components in a power grid (Fig. 3). We 
further propose a decentralized overload mitigation 
approach to stop a potential cascade (Fig. 4).  
 
 
 
A standard measure of risk due to a random disturbance: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 

Figure 1. Cascading failure risk estimates using the Random 
Chemistry and Monte-Carlo methods in the Polish grid with 2896 
branches. 
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Risk as a function of load  
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Figure 2. Cascading failure risk vs. load level for RTS-96: (a) 
SCDCOPF, and (b) Proportional dispatch. The proportional 
dispatch is more expensive, but has a much lower risk, which 
shows a trade-off between cost of dispatch and risk. 

Figure 3. Complementary Cumulative Distribution Function of 
sensitivities (one circle per branch) 
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Estimating Cascading Failure Risk 
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Figure 4. Statistical performance of the decentralized controller 
after applying all n-2 contingencies to a modified IEEE 30-bus 
case: The box plot indicates total blackout sizes, where the line 
shows the median value (a) without, and (b) with negotiation 
capability; bottom panels show empirical probability of 
eliminating overloads (dashed line and circle markers) and the 
average time (solid line and asterisk markers) that it takes to solve 
the problem (c) without, and (d) with negotiation. The case ID p-q 
represents the local neighborhood size p and extended 
neighborhood size q.  

Ω: node/line local neighborhood,   Ωc: nodes outside Ω 
ΔPD/ΔPG: variation in load/generation 
fover: slack variable to define a soft constraint for overload 
B: bus susceptance matrix  

Disadvantages of Centralized Control 

A central controller has certain flaws when it comes to 
implementation, which makes it impractical: 
•  It needs a huge communication infrastructure to collect 

and submit information to the whole network 
•  It is more vulnerable to failures. One failure in a part of 

the system can collapse the control scheme.  
•  There are multiple control regions in an actual large-

scale power grid, with operators each being in charge of 
their own area.  

•  Variation in load/generation on a bus typically has 
localized effects and does not generally affect the whole 
system.  

Similar to 
optimal 

After each agent solves their own optimization problem with 
the optimization control variables to exist only in the local 
neighborhood, it implements the load/generation reduction 
only on its own when negotiation is off, or the whole local 
neighborhood when negotiation is on.  

Decentralized Overload Mitigation Problem 


